Merge branch 'mh/ref-lock-entry'
[git/git.git] / refs / refs-internal.h
1 #ifndef REFS_REFS_INTERNAL_H
2 #define REFS_REFS_INTERNAL_H
3
4 /*
5 * Data structures and functions for the internal use of the refs
6 * module. Code outside of the refs module should use only the public
7 * functions defined in "refs.h", and should *not* include this file.
8 */
9
10 /*
11 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken
12 * refs (i.e., because the reference is about to be deleted anyway).
13 */
14 #define REF_DELETING 0x02
15
16 /*
17 * Used as a flag in ref_update::flags when a loose ref is being
18 * pruned. This flag must only be used when REF_NODEREF is set.
19 */
20 #define REF_ISPRUNING 0x04
21
22 /*
23 * Used as a flag in ref_update::flags when the reference should be
24 * updated to new_sha1.
25 */
26 #define REF_HAVE_NEW 0x08
27
28 /*
29 * Used as a flag in ref_update::flags when old_sha1 should be
30 * checked.
31 */
32 #define REF_HAVE_OLD 0x10
33
34 /*
35 * Used as a flag in ref_update::flags when the lockfile needs to be
36 * committed.
37 */
38 #define REF_NEEDS_COMMIT 0x20
39
40 /*
41 * 0x40 is REF_FORCE_CREATE_REFLOG, so skip it if you're adding a
42 * value to ref_update::flags
43 */
44
45 /*
46 * Used as a flag in ref_update::flags when we want to log a ref
47 * update but not actually perform it. This is used when a symbolic
48 * ref update is split up.
49 */
50 #define REF_LOG_ONLY 0x80
51
52 /*
53 * Internal flag, meaning that the containing ref_update was via an
54 * update to HEAD.
55 */
56 #define REF_UPDATE_VIA_HEAD 0x100
57
58 /*
59 * Used as a flag in ref_update::flags when the loose reference has
60 * been deleted.
61 */
62 #define REF_DELETED_LOOSE 0x200
63
64 /*
65 * Return the length of time to retry acquiring a loose reference lock
66 * before giving up, in milliseconds:
67 */
68 long get_files_ref_lock_timeout_ms(void);
69
70 /*
71 * Return true iff refname is minimally safe. "Safe" here means that
72 * deleting a loose reference by this name will not do any damage, for
73 * example by causing a file that is not a reference to be deleted.
74 * This function does not check that the reference name is legal; for
75 * that, use check_refname_format().
76 *
77 * A refname that starts with "refs/" is considered safe iff it
78 * doesn't contain any "." or ".." components or consecutive '/'
79 * characters, end with '/', or (on Windows) contain any '\'
80 * characters. Names that do not start with "refs/" are considered
81 * safe iff they consist entirely of upper case characters and '_'
82 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR").
83 */
84 int refname_is_safe(const char *refname);
85
86 /*
87 * Helper function: return true if refname, which has the specified
88 * oid and flags, can be resolved to an object in the database. If the
89 * referred-to object does not exist, emit a warning and return false.
90 */
91 int ref_resolves_to_object(const char *refname,
92 const struct object_id *oid,
93 unsigned int flags);
94
95 enum peel_status {
96 /* object was peeled successfully: */
97 PEEL_PEELED = 0,
98
99 /*
100 * object cannot be peeled because the named object (or an
101 * object referred to by a tag in the peel chain), does not
102 * exist.
103 */
104 PEEL_INVALID = -1,
105
106 /* object cannot be peeled because it is not a tag: */
107 PEEL_NON_TAG = -2,
108
109 /* ref_entry contains no peeled value because it is a symref: */
110 PEEL_IS_SYMREF = -3,
111
112 /*
113 * ref_entry cannot be peeled because it is broken (i.e., the
114 * symbolic reference cannot even be resolved to an object
115 * name):
116 */
117 PEEL_BROKEN = -4
118 };
119
120 /*
121 * Peel the named object; i.e., if the object is a tag, resolve the
122 * tag recursively until a non-tag is found. If successful, store the
123 * result to sha1 and return PEEL_PEELED. If the object is not a tag
124 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
125 * and leave sha1 unchanged.
126 */
127 enum peel_status peel_object(const unsigned char *name, unsigned char *sha1);
128
129 /*
130 * Copy the reflog message msg to buf, which has been allocated sufficiently
131 * large, while cleaning up the whitespaces. Especially, convert LF to space,
132 * because reflog file is one line per entry.
133 */
134 int copy_reflog_msg(char *buf, const char *msg);
135
136 /**
137 * Information needed for a single ref update. Set new_sha1 to the new
138 * value or to null_sha1 to delete the ref. To check the old value
139 * while the ref is locked, set (flags & REF_HAVE_OLD) and set
140 * old_sha1 to the old value, or to null_sha1 to ensure the ref does
141 * not exist before update.
142 */
143 struct ref_update {
144
145 /*
146 * If (flags & REF_HAVE_NEW), set the reference to this value:
147 */
148 struct object_id new_oid;
149
150 /*
151 * If (flags & REF_HAVE_OLD), check that the reference
152 * previously had this value:
153 */
154 struct object_id old_oid;
155
156 /*
157 * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF,
158 * REF_DELETING, REF_ISPRUNING, REF_LOG_ONLY,
159 * REF_UPDATE_VIA_HEAD, REF_NEEDS_COMMIT, and
160 * REF_DELETED_LOOSE:
161 */
162 unsigned int flags;
163
164 void *backend_data;
165 unsigned int type;
166 char *msg;
167
168 /*
169 * If this ref_update was split off of a symref update via
170 * split_symref_update(), then this member points at that
171 * update. This is used for two purposes:
172 * 1. When reporting errors, we report the refname under which
173 * the update was originally requested.
174 * 2. When we read the old value of this reference, we
175 * propagate it back to its parent update for recording in
176 * the latter's reflog.
177 */
178 struct ref_update *parent_update;
179
180 const char refname[FLEX_ARRAY];
181 };
182
183 int refs_read_raw_ref(struct ref_store *ref_store,
184 const char *refname, unsigned char *sha1,
185 struct strbuf *referent, unsigned int *type);
186
187 /*
188 * Write an error to `err` and return a nonzero value iff the same
189 * refname appears multiple times in `refnames`. `refnames` must be
190 * sorted on entry to this function.
191 */
192 int ref_update_reject_duplicates(struct string_list *refnames,
193 struct strbuf *err);
194
195 /*
196 * Add a ref_update with the specified properties to transaction, and
197 * return a pointer to the new object. This function does not verify
198 * that refname is well-formed. new_sha1 and old_sha1 are only
199 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits,
200 * respectively, are set in flags.
201 */
202 struct ref_update *ref_transaction_add_update(
203 struct ref_transaction *transaction,
204 const char *refname, unsigned int flags,
205 const unsigned char *new_sha1,
206 const unsigned char *old_sha1,
207 const char *msg);
208
209 /*
210 * Transaction states.
211 *
212 * OPEN: The transaction is initialized and new updates can still be
213 * added to it. An OPEN transaction can be prepared,
214 * committed, freed, or aborted (freeing and aborting an open
215 * transaction are equivalent).
216 *
217 * PREPARED: ref_transaction_prepare(), which locks all of the
218 * references involved in the update and checks that the
219 * update has no errors, has been called successfully for the
220 * transaction. A PREPARED transaction can be committed or
221 * aborted.
222 *
223 * CLOSED: The transaction is no longer active. A transaction becomes
224 * CLOSED if there is a failure while building the transaction
225 * or if a transaction is committed or aborted. A CLOSED
226 * transaction can only be freed.
227 */
228 enum ref_transaction_state {
229 REF_TRANSACTION_OPEN = 0,
230 REF_TRANSACTION_PREPARED = 1,
231 REF_TRANSACTION_CLOSED = 2
232 };
233
234 /*
235 * Data structure for holding a reference transaction, which can
236 * consist of checks and updates to multiple references, carried out
237 * as atomically as possible. This structure is opaque to callers.
238 */
239 struct ref_transaction {
240 struct ref_store *ref_store;
241 struct ref_update **updates;
242 size_t alloc;
243 size_t nr;
244 enum ref_transaction_state state;
245 };
246
247 /*
248 * Check for entries in extras that are within the specified
249 * directory, where dirname is a reference directory name including
250 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any
251 * conflicting references that are found in skip. If there is a
252 * conflicting reference, return its name.
253 *
254 * extras and skip must be sorted lists of reference names. Either one
255 * can be NULL, signifying the empty list.
256 */
257 const char *find_descendant_ref(const char *dirname,
258 const struct string_list *extras,
259 const struct string_list *skip);
260
261 /*
262 * Check whether an attempt to rename old_refname to new_refname would
263 * cause a D/F conflict with any existing reference (other than
264 * possibly old_refname). If there would be a conflict, emit an error
265 * message and return false; otherwise, return true.
266 *
267 * Note that this function is not safe against all races with other
268 * processes (though rename_ref() catches some races that might get by
269 * this check).
270 */
271 int refs_rename_ref_available(struct ref_store *refs,
272 const char *old_refname,
273 const char *new_refname);
274
275 /* We allow "recursive" symbolic refs. Only within reason, though */
276 #define SYMREF_MAXDEPTH 5
277
278 /* Include broken references in a do_for_each_ref*() iteration: */
279 #define DO_FOR_EACH_INCLUDE_BROKEN 0x01
280
281 /*
282 * Reference iterators
283 *
284 * A reference iterator encapsulates the state of an in-progress
285 * iteration over references. Create an instance of `struct
286 * ref_iterator` via one of the functions in this module.
287 *
288 * A freshly-created ref_iterator doesn't yet point at a reference. To
289 * advance the iterator, call ref_iterator_advance(). If successful,
290 * this sets the iterator's refname, oid, and flags fields to describe
291 * the next reference and returns ITER_OK. The data pointed at by
292 * refname and oid belong to the iterator; if you want to retain them
293 * after calling ref_iterator_advance() again or calling
294 * ref_iterator_abort(), you must make a copy. When the iteration has
295 * been exhausted, ref_iterator_advance() releases any resources
296 * assocated with the iteration, frees the ref_iterator object, and
297 * returns ITER_DONE. If you want to abort the iteration early, call
298 * ref_iterator_abort(), which also frees the ref_iterator object and
299 * any associated resources. If there was an internal error advancing
300 * to the next entry, ref_iterator_advance() aborts the iteration,
301 * frees the ref_iterator, and returns ITER_ERROR.
302 *
303 * The reference currently being looked at can be peeled by calling
304 * ref_iterator_peel(). This function is often faster than peel_ref(),
305 * so it should be preferred when iterating over references.
306 *
307 * Putting it all together, a typical iteration looks like this:
308 *
309 * int ok;
310 * struct ref_iterator *iter = ...;
311 *
312 * while ((ok = ref_iterator_advance(iter)) == ITER_OK) {
313 * if (want_to_stop_iteration()) {
314 * ok = ref_iterator_abort(iter);
315 * break;
316 * }
317 *
318 * // Access information about the current reference:
319 * if (!(iter->flags & REF_ISSYMREF))
320 * printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid));
321 *
322 * // If you need to peel the reference:
323 * ref_iterator_peel(iter, &oid);
324 * }
325 *
326 * if (ok != ITER_DONE)
327 * handle_error();
328 */
329 struct ref_iterator {
330 struct ref_iterator_vtable *vtable;
331 const char *refname;
332 const struct object_id *oid;
333 unsigned int flags;
334 };
335
336 /*
337 * Advance the iterator to the first or next item and return ITER_OK.
338 * If the iteration is exhausted, free the resources associated with
339 * the ref_iterator and return ITER_DONE. On errors, free the iterator
340 * resources and return ITER_ERROR. It is a bug to use ref_iterator or
341 * call this function again after it has returned ITER_DONE or
342 * ITER_ERROR.
343 */
344 int ref_iterator_advance(struct ref_iterator *ref_iterator);
345
346 /*
347 * If possible, peel the reference currently being viewed by the
348 * iterator. Return 0 on success.
349 */
350 int ref_iterator_peel(struct ref_iterator *ref_iterator,
351 struct object_id *peeled);
352
353 /*
354 * End the iteration before it has been exhausted, freeing the
355 * reference iterator and any associated resources and returning
356 * ITER_DONE. If the abort itself failed, return ITER_ERROR.
357 */
358 int ref_iterator_abort(struct ref_iterator *ref_iterator);
359
360 /*
361 * An iterator over nothing (its first ref_iterator_advance() call
362 * returns ITER_DONE).
363 */
364 struct ref_iterator *empty_ref_iterator_begin(void);
365
366 /*
367 * Return true iff ref_iterator is an empty_ref_iterator.
368 */
369 int is_empty_ref_iterator(struct ref_iterator *ref_iterator);
370
371 /*
372 * Return an iterator that goes over each reference in `refs` for
373 * which the refname begins with prefix. If trim is non-zero, then
374 * trim that many characters off the beginning of each refname. flags
375 * can be DO_FOR_EACH_INCLUDE_BROKEN to include broken references in
376 * the iteration.
377 */
378 struct ref_iterator *refs_ref_iterator_begin(
379 struct ref_store *refs,
380 const char *prefix, int trim, int flags);
381
382 /*
383 * A callback function used to instruct merge_ref_iterator how to
384 * interleave the entries from iter0 and iter1. The function should
385 * return one of the constants defined in enum iterator_selection. It
386 * must not advance either of the iterators itself.
387 *
388 * The function must be prepared to handle the case that iter0 and/or
389 * iter1 is NULL, which indicates that the corresponding sub-iterator
390 * has been exhausted. Its return value must be consistent with the
391 * current states of the iterators; e.g., it must not return
392 * ITER_SKIP_1 if iter1 has already been exhausted.
393 */
394 typedef enum iterator_selection ref_iterator_select_fn(
395 struct ref_iterator *iter0, struct ref_iterator *iter1,
396 void *cb_data);
397
398 /*
399 * Iterate over the entries from iter0 and iter1, with the values
400 * interleaved as directed by the select function. The iterator takes
401 * ownership of iter0 and iter1 and frees them when the iteration is
402 * over.
403 */
404 struct ref_iterator *merge_ref_iterator_begin(
405 struct ref_iterator *iter0, struct ref_iterator *iter1,
406 ref_iterator_select_fn *select, void *cb_data);
407
408 /*
409 * An iterator consisting of the union of the entries from front and
410 * back. If there are entries common to the two sub-iterators, use the
411 * one from front. Each iterator must iterate over its entries in
412 * strcmp() order by refname for this to work.
413 *
414 * The new iterator takes ownership of its arguments and frees them
415 * when the iteration is over. As a convenience to callers, if front
416 * or back is an empty_ref_iterator, then abort that one immediately
417 * and return the other iterator directly, without wrapping it.
418 */
419 struct ref_iterator *overlay_ref_iterator_begin(
420 struct ref_iterator *front, struct ref_iterator *back);
421
422 /*
423 * Wrap iter0, only letting through the references whose names start
424 * with prefix. If trim is set, set iter->refname to the name of the
425 * reference with that many characters trimmed off the front;
426 * otherwise set it to the full refname. The new iterator takes over
427 * ownership of iter0 and frees it when iteration is over. It makes
428 * its own copy of prefix.
429 *
430 * As an convenience to callers, if prefix is the empty string and
431 * trim is zero, this function returns iter0 directly, without
432 * wrapping it.
433 */
434 struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0,
435 const char *prefix,
436 int trim);
437
438 /* Internal implementation of reference iteration: */
439
440 /*
441 * Base class constructor for ref_iterators. Initialize the
442 * ref_iterator part of iter, setting its vtable pointer as specified.
443 * This is meant to be called only by the initializers of derived
444 * classes.
445 */
446 void base_ref_iterator_init(struct ref_iterator *iter,
447 struct ref_iterator_vtable *vtable);
448
449 /*
450 * Base class destructor for ref_iterators. Destroy the ref_iterator
451 * part of iter and shallow-free the object. This is meant to be
452 * called only by the destructors of derived classes.
453 */
454 void base_ref_iterator_free(struct ref_iterator *iter);
455
456 /* Virtual function declarations for ref_iterators: */
457
458 typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator);
459
460 typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator,
461 struct object_id *peeled);
462
463 /*
464 * Implementations of this function should free any resources specific
465 * to the derived class, then call base_ref_iterator_free() to clean
466 * up and free the ref_iterator object.
467 */
468 typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator);
469
470 struct ref_iterator_vtable {
471 ref_iterator_advance_fn *advance;
472 ref_iterator_peel_fn *peel;
473 ref_iterator_abort_fn *abort;
474 };
475
476 /*
477 * current_ref_iter is a performance hack: when iterating over
478 * references using the for_each_ref*() functions, current_ref_iter is
479 * set to the reference iterator before calling the callback function.
480 * If the callback function calls peel_ref(), then peel_ref() first
481 * checks whether the reference to be peeled is the one referred to by
482 * the iterator (it usually is) and if so, asks the iterator for the
483 * peeled version of the reference if it is available. This avoids a
484 * refname lookup in a common case. current_ref_iter is set to NULL
485 * when the iteration is over.
486 */
487 extern struct ref_iterator *current_ref_iter;
488
489 /*
490 * The common backend for the for_each_*ref* functions. Call fn for
491 * each reference in iter. If the iterator itself ever returns
492 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop
493 * the iteration and return that value. Otherwise, return 0. In any
494 * case, free the iterator when done. This function is basically an
495 * adapter between the callback style of reference iteration and the
496 * iterator style.
497 */
498 int do_for_each_ref_iterator(struct ref_iterator *iter,
499 each_ref_fn fn, void *cb_data);
500
501 /*
502 * Only include per-worktree refs in a do_for_each_ref*() iteration.
503 * Normally this will be used with a files ref_store, since that's
504 * where all reference backends will presumably store their
505 * per-worktree refs.
506 */
507 #define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02
508
509 struct ref_store;
510
511 /* refs backends */
512
513 /* ref_store_init flags */
514 #define REF_STORE_READ (1 << 0)
515 #define REF_STORE_WRITE (1 << 1) /* can perform update operations */
516 #define REF_STORE_ODB (1 << 2) /* has access to object database */
517 #define REF_STORE_MAIN (1 << 3)
518 #define REF_STORE_ALL_CAPS (REF_STORE_READ | \
519 REF_STORE_WRITE | \
520 REF_STORE_ODB | \
521 REF_STORE_MAIN)
522
523 /*
524 * Initialize the ref_store for the specified gitdir. These functions
525 * should call base_ref_store_init() to initialize the shared part of
526 * the ref_store and to record the ref_store for later lookup.
527 */
528 typedef struct ref_store *ref_store_init_fn(const char *gitdir,
529 unsigned int flags);
530
531 typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err);
532
533 typedef int ref_transaction_prepare_fn(struct ref_store *refs,
534 struct ref_transaction *transaction,
535 struct strbuf *err);
536
537 typedef int ref_transaction_finish_fn(struct ref_store *refs,
538 struct ref_transaction *transaction,
539 struct strbuf *err);
540
541 typedef int ref_transaction_abort_fn(struct ref_store *refs,
542 struct ref_transaction *transaction,
543 struct strbuf *err);
544
545 typedef int ref_transaction_commit_fn(struct ref_store *refs,
546 struct ref_transaction *transaction,
547 struct strbuf *err);
548
549 typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags);
550 typedef int peel_ref_fn(struct ref_store *ref_store,
551 const char *refname, unsigned char *sha1);
552 typedef int create_symref_fn(struct ref_store *ref_store,
553 const char *ref_target,
554 const char *refs_heads_master,
555 const char *logmsg);
556 typedef int delete_refs_fn(struct ref_store *ref_store, const char *msg,
557 struct string_list *refnames, unsigned int flags);
558 typedef int rename_ref_fn(struct ref_store *ref_store,
559 const char *oldref, const char *newref,
560 const char *logmsg);
561
562 /*
563 * Iterate over the references in `ref_store` whose names start with
564 * `prefix`. `prefix` is matched as a literal string, without regard
565 * for path separators. If prefix is NULL or the empty string, iterate
566 * over all references in `ref_store`.
567 */
568 typedef struct ref_iterator *ref_iterator_begin_fn(
569 struct ref_store *ref_store,
570 const char *prefix, unsigned int flags);
571
572 /* reflog functions */
573
574 /*
575 * Iterate over the references in the specified ref_store that have a
576 * reflog. The refs are iterated over in arbitrary order.
577 */
578 typedef struct ref_iterator *reflog_iterator_begin_fn(
579 struct ref_store *ref_store);
580
581 typedef int for_each_reflog_ent_fn(struct ref_store *ref_store,
582 const char *refname,
583 each_reflog_ent_fn fn,
584 void *cb_data);
585 typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store,
586 const char *refname,
587 each_reflog_ent_fn fn,
588 void *cb_data);
589 typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname);
590 typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname,
591 int force_create, struct strbuf *err);
592 typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname);
593 typedef int reflog_expire_fn(struct ref_store *ref_store,
594 const char *refname, const unsigned char *sha1,
595 unsigned int flags,
596 reflog_expiry_prepare_fn prepare_fn,
597 reflog_expiry_should_prune_fn should_prune_fn,
598 reflog_expiry_cleanup_fn cleanup_fn,
599 void *policy_cb_data);
600
601 /*
602 * Read a reference from the specified reference store, non-recursively.
603 * Set type to describe the reference, and:
604 *
605 * - If refname is the name of a normal reference, fill in sha1
606 * (leaving referent unchanged).
607 *
608 * - If refname is the name of a symbolic reference, write the full
609 * name of the reference to which it refers (e.g.
610 * "refs/heads/master") to referent and set the REF_ISSYMREF bit in
611 * type (leaving sha1 unchanged). The caller is responsible for
612 * validating that referent is a valid reference name.
613 *
614 * WARNING: refname might be used as part of a filename, so it is
615 * important from a security standpoint that it be safe in the sense
616 * of refname_is_safe(). Moreover, for symrefs this function sets
617 * referent to whatever the repository says, which might not be a
618 * properly-formatted or even safe reference name. NEITHER INPUT NOR
619 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION.
620 *
621 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT
622 * and return -1. If the ref exists but is neither a symbolic ref nor
623 * a sha1, it is broken; set REF_ISBROKEN in type, set errno to
624 * EINVAL, and return -1. If there is another error reading the ref,
625 * set errno appropriately and return -1.
626 *
627 * Backend-specific flags might be set in type as well, regardless of
628 * outcome.
629 *
630 * It is OK for refname to point into referent. If so:
631 *
632 * - if the function succeeds with REF_ISSYMREF, referent will be
633 * overwritten and the memory formerly pointed to by it might be
634 * changed or even freed.
635 *
636 * - in all other cases, referent will be untouched, and therefore
637 * refname will still be valid and unchanged.
638 */
639 typedef int read_raw_ref_fn(struct ref_store *ref_store,
640 const char *refname, unsigned char *sha1,
641 struct strbuf *referent, unsigned int *type);
642
643 struct ref_storage_be {
644 struct ref_storage_be *next;
645 const char *name;
646 ref_store_init_fn *init;
647 ref_init_db_fn *init_db;
648
649 ref_transaction_prepare_fn *transaction_prepare;
650 ref_transaction_finish_fn *transaction_finish;
651 ref_transaction_abort_fn *transaction_abort;
652 ref_transaction_commit_fn *initial_transaction_commit;
653
654 pack_refs_fn *pack_refs;
655 peel_ref_fn *peel_ref;
656 create_symref_fn *create_symref;
657 delete_refs_fn *delete_refs;
658 rename_ref_fn *rename_ref;
659
660 ref_iterator_begin_fn *iterator_begin;
661 read_raw_ref_fn *read_raw_ref;
662
663 reflog_iterator_begin_fn *reflog_iterator_begin;
664 for_each_reflog_ent_fn *for_each_reflog_ent;
665 for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse;
666 reflog_exists_fn *reflog_exists;
667 create_reflog_fn *create_reflog;
668 delete_reflog_fn *delete_reflog;
669 reflog_expire_fn *reflog_expire;
670 };
671
672 extern struct ref_storage_be refs_be_files;
673 extern struct ref_storage_be refs_be_packed;
674
675 /*
676 * A representation of the reference store for the main repository or
677 * a submodule. The ref_store instances for submodules are kept in a
678 * linked list.
679 */
680 struct ref_store {
681 /* The backend describing this ref_store's storage scheme: */
682 const struct ref_storage_be *be;
683 };
684
685 /*
686 * Fill in the generic part of refs and add it to our collection of
687 * reference stores.
688 */
689 void base_ref_store_init(struct ref_store *refs,
690 const struct ref_storage_be *be);
691
692 #endif /* REFS_REFS_INTERNAL_H */