Merge branch 'jt/partial-clone-fsck-connectivity'
[git/git.git] / refs / refs-internal.h
1 #ifndef REFS_REFS_INTERNAL_H
2 #define REFS_REFS_INTERNAL_H
3
4 #include "iterator.h"
5
6 /*
7 * Data structures and functions for the internal use of the refs
8 * module. Code outside of the refs module should use only the public
9 * functions defined in "refs.h", and should *not* include this file.
10 */
11
12 /*
13 * The following flags can appear in `ref_update::flags`. Their
14 * numerical values must not conflict with those of REF_NO_DEREF and
15 * REF_FORCE_CREATE_REFLOG, which are also stored in
16 * `ref_update::flags`.
17 */
18
19 /*
20 * The reference should be updated to new_oid.
21 */
22 #define REF_HAVE_NEW (1 << 2)
23
24 /*
25 * The current reference's value should be checked to make sure that
26 * it agrees with old_oid.
27 */
28 #define REF_HAVE_OLD (1 << 3)
29
30 /*
31 * Return the length of time to retry acquiring a loose reference lock
32 * before giving up, in milliseconds:
33 */
34 long get_files_ref_lock_timeout_ms(void);
35
36 /*
37 * Return true iff refname is minimally safe. "Safe" here means that
38 * deleting a loose reference by this name will not do any damage, for
39 * example by causing a file that is not a reference to be deleted.
40 * This function does not check that the reference name is legal; for
41 * that, use check_refname_format().
42 *
43 * A refname that starts with "refs/" is considered safe iff it
44 * doesn't contain any "." or ".." components or consecutive '/'
45 * characters, end with '/', or (on Windows) contain any '\'
46 * characters. Names that do not start with "refs/" are considered
47 * safe iff they consist entirely of upper case characters and '_'
48 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR").
49 */
50 int refname_is_safe(const char *refname);
51
52 /*
53 * Helper function: return true if refname, which has the specified
54 * oid and flags, can be resolved to an object in the database. If the
55 * referred-to object does not exist, emit a warning and return false.
56 */
57 int ref_resolves_to_object(const char *refname,
58 const struct object_id *oid,
59 unsigned int flags);
60
61 enum peel_status {
62 /* object was peeled successfully: */
63 PEEL_PEELED = 0,
64
65 /*
66 * object cannot be peeled because the named object (or an
67 * object referred to by a tag in the peel chain), does not
68 * exist.
69 */
70 PEEL_INVALID = -1,
71
72 /* object cannot be peeled because it is not a tag: */
73 PEEL_NON_TAG = -2,
74
75 /* ref_entry contains no peeled value because it is a symref: */
76 PEEL_IS_SYMREF = -3,
77
78 /*
79 * ref_entry cannot be peeled because it is broken (i.e., the
80 * symbolic reference cannot even be resolved to an object
81 * name):
82 */
83 PEEL_BROKEN = -4
84 };
85
86 /*
87 * Peel the named object; i.e., if the object is a tag, resolve the
88 * tag recursively until a non-tag is found. If successful, store the
89 * result to oid and return PEEL_PEELED. If the object is not a tag
90 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
91 * and leave oid unchanged.
92 */
93 enum peel_status peel_object(const struct object_id *name, struct object_id *oid);
94
95 /*
96 * Copy the reflog message msg to buf, which has been allocated sufficiently
97 * large, while cleaning up the whitespaces. Especially, convert LF to space,
98 * because reflog file is one line per entry.
99 */
100 int copy_reflog_msg(char *buf, const char *msg);
101
102 /**
103 * Information needed for a single ref update. Set new_oid to the new
104 * value or to null_oid to delete the ref. To check the old value
105 * while the ref is locked, set (flags & REF_HAVE_OLD) and set old_oid
106 * to the old value, or to null_oid to ensure the ref does not exist
107 * before update.
108 */
109 struct ref_update {
110 /*
111 * If (flags & REF_HAVE_NEW), set the reference to this value
112 * (or delete it, if `new_oid` is `null_oid`).
113 */
114 struct object_id new_oid;
115
116 /*
117 * If (flags & REF_HAVE_OLD), check that the reference
118 * previously had this value (or didn't previously exist, if
119 * `old_oid` is `null_oid`).
120 */
121 struct object_id old_oid;
122
123 /*
124 * One or more of REF_NO_DEREF, REF_FORCE_CREATE_REFLOG,
125 * REF_HAVE_NEW, REF_HAVE_OLD, or backend-specific flags.
126 */
127 unsigned int flags;
128
129 void *backend_data;
130 unsigned int type;
131 char *msg;
132
133 /*
134 * If this ref_update was split off of a symref update via
135 * split_symref_update(), then this member points at that
136 * update. This is used for two purposes:
137 * 1. When reporting errors, we report the refname under which
138 * the update was originally requested.
139 * 2. When we read the old value of this reference, we
140 * propagate it back to its parent update for recording in
141 * the latter's reflog.
142 */
143 struct ref_update *parent_update;
144
145 const char refname[FLEX_ARRAY];
146 };
147
148 int refs_read_raw_ref(struct ref_store *ref_store,
149 const char *refname, struct object_id *oid,
150 struct strbuf *referent, unsigned int *type);
151
152 /*
153 * Write an error to `err` and return a nonzero value iff the same
154 * refname appears multiple times in `refnames`. `refnames` must be
155 * sorted on entry to this function.
156 */
157 int ref_update_reject_duplicates(struct string_list *refnames,
158 struct strbuf *err);
159
160 /*
161 * Add a ref_update with the specified properties to transaction, and
162 * return a pointer to the new object. This function does not verify
163 * that refname is well-formed. new_oid and old_oid are only
164 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits,
165 * respectively, are set in flags.
166 */
167 struct ref_update *ref_transaction_add_update(
168 struct ref_transaction *transaction,
169 const char *refname, unsigned int flags,
170 const struct object_id *new_oid,
171 const struct object_id *old_oid,
172 const char *msg);
173
174 /*
175 * Transaction states.
176 *
177 * OPEN: The transaction is initialized and new updates can still be
178 * added to it. An OPEN transaction can be prepared,
179 * committed, freed, or aborted (freeing and aborting an open
180 * transaction are equivalent).
181 *
182 * PREPARED: ref_transaction_prepare(), which locks all of the
183 * references involved in the update and checks that the
184 * update has no errors, has been called successfully for the
185 * transaction. A PREPARED transaction can be committed or
186 * aborted.
187 *
188 * CLOSED: The transaction is no longer active. A transaction becomes
189 * CLOSED if there is a failure while building the transaction
190 * or if a transaction is committed or aborted. A CLOSED
191 * transaction can only be freed.
192 */
193 enum ref_transaction_state {
194 REF_TRANSACTION_OPEN = 0,
195 REF_TRANSACTION_PREPARED = 1,
196 REF_TRANSACTION_CLOSED = 2
197 };
198
199 /*
200 * Data structure for holding a reference transaction, which can
201 * consist of checks and updates to multiple references, carried out
202 * as atomically as possible. This structure is opaque to callers.
203 */
204 struct ref_transaction {
205 struct ref_store *ref_store;
206 struct ref_update **updates;
207 size_t alloc;
208 size_t nr;
209 enum ref_transaction_state state;
210 void *backend_data;
211 };
212
213 /*
214 * Check for entries in extras that are within the specified
215 * directory, where dirname is a reference directory name including
216 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any
217 * conflicting references that are found in skip. If there is a
218 * conflicting reference, return its name.
219 *
220 * extras and skip must be sorted lists of reference names. Either one
221 * can be NULL, signifying the empty list.
222 */
223 const char *find_descendant_ref(const char *dirname,
224 const struct string_list *extras,
225 const struct string_list *skip);
226
227 /*
228 * Check whether an attempt to rename old_refname to new_refname would
229 * cause a D/F conflict with any existing reference (other than
230 * possibly old_refname). If there would be a conflict, emit an error
231 * message and return false; otherwise, return true.
232 *
233 * Note that this function is not safe against all races with other
234 * processes (though rename_ref() catches some races that might get by
235 * this check).
236 */
237 int refs_rename_ref_available(struct ref_store *refs,
238 const char *old_refname,
239 const char *new_refname);
240
241 /* We allow "recursive" symbolic refs. Only within reason, though */
242 #define SYMREF_MAXDEPTH 5
243
244 /* Include broken references in a do_for_each_ref*() iteration: */
245 #define DO_FOR_EACH_INCLUDE_BROKEN 0x01
246
247 /*
248 * Reference iterators
249 *
250 * A reference iterator encapsulates the state of an in-progress
251 * iteration over references. Create an instance of `struct
252 * ref_iterator` via one of the functions in this module.
253 *
254 * A freshly-created ref_iterator doesn't yet point at a reference. To
255 * advance the iterator, call ref_iterator_advance(). If successful,
256 * this sets the iterator's refname, oid, and flags fields to describe
257 * the next reference and returns ITER_OK. The data pointed at by
258 * refname and oid belong to the iterator; if you want to retain them
259 * after calling ref_iterator_advance() again or calling
260 * ref_iterator_abort(), you must make a copy. When the iteration has
261 * been exhausted, ref_iterator_advance() releases any resources
262 * assocated with the iteration, frees the ref_iterator object, and
263 * returns ITER_DONE. If you want to abort the iteration early, call
264 * ref_iterator_abort(), which also frees the ref_iterator object and
265 * any associated resources. If there was an internal error advancing
266 * to the next entry, ref_iterator_advance() aborts the iteration,
267 * frees the ref_iterator, and returns ITER_ERROR.
268 *
269 * The reference currently being looked at can be peeled by calling
270 * ref_iterator_peel(). This function is often faster than peel_ref(),
271 * so it should be preferred when iterating over references.
272 *
273 * Putting it all together, a typical iteration looks like this:
274 *
275 * int ok;
276 * struct ref_iterator *iter = ...;
277 *
278 * while ((ok = ref_iterator_advance(iter)) == ITER_OK) {
279 * if (want_to_stop_iteration()) {
280 * ok = ref_iterator_abort(iter);
281 * break;
282 * }
283 *
284 * // Access information about the current reference:
285 * if (!(iter->flags & REF_ISSYMREF))
286 * printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid));
287 *
288 * // If you need to peel the reference:
289 * ref_iterator_peel(iter, &oid);
290 * }
291 *
292 * if (ok != ITER_DONE)
293 * handle_error();
294 */
295 struct ref_iterator {
296 struct ref_iterator_vtable *vtable;
297
298 /*
299 * Does this `ref_iterator` iterate over references in order
300 * by refname?
301 */
302 unsigned int ordered : 1;
303
304 const char *refname;
305 const struct object_id *oid;
306 unsigned int flags;
307 };
308
309 /*
310 * Advance the iterator to the first or next item and return ITER_OK.
311 * If the iteration is exhausted, free the resources associated with
312 * the ref_iterator and return ITER_DONE. On errors, free the iterator
313 * resources and return ITER_ERROR. It is a bug to use ref_iterator or
314 * call this function again after it has returned ITER_DONE or
315 * ITER_ERROR.
316 */
317 int ref_iterator_advance(struct ref_iterator *ref_iterator);
318
319 /*
320 * If possible, peel the reference currently being viewed by the
321 * iterator. Return 0 on success.
322 */
323 int ref_iterator_peel(struct ref_iterator *ref_iterator,
324 struct object_id *peeled);
325
326 /*
327 * End the iteration before it has been exhausted, freeing the
328 * reference iterator and any associated resources and returning
329 * ITER_DONE. If the abort itself failed, return ITER_ERROR.
330 */
331 int ref_iterator_abort(struct ref_iterator *ref_iterator);
332
333 /*
334 * An iterator over nothing (its first ref_iterator_advance() call
335 * returns ITER_DONE).
336 */
337 struct ref_iterator *empty_ref_iterator_begin(void);
338
339 /*
340 * Return true iff ref_iterator is an empty_ref_iterator.
341 */
342 int is_empty_ref_iterator(struct ref_iterator *ref_iterator);
343
344 /*
345 * Return an iterator that goes over each reference in `refs` for
346 * which the refname begins with prefix. If trim is non-zero, then
347 * trim that many characters off the beginning of each refname. flags
348 * can be DO_FOR_EACH_INCLUDE_BROKEN to include broken references in
349 * the iteration. The output is ordered by refname.
350 */
351 struct ref_iterator *refs_ref_iterator_begin(
352 struct ref_store *refs,
353 const char *prefix, int trim, int flags);
354
355 /*
356 * A callback function used to instruct merge_ref_iterator how to
357 * interleave the entries from iter0 and iter1. The function should
358 * return one of the constants defined in enum iterator_selection. It
359 * must not advance either of the iterators itself.
360 *
361 * The function must be prepared to handle the case that iter0 and/or
362 * iter1 is NULL, which indicates that the corresponding sub-iterator
363 * has been exhausted. Its return value must be consistent with the
364 * current states of the iterators; e.g., it must not return
365 * ITER_SKIP_1 if iter1 has already been exhausted.
366 */
367 typedef enum iterator_selection ref_iterator_select_fn(
368 struct ref_iterator *iter0, struct ref_iterator *iter1,
369 void *cb_data);
370
371 /*
372 * Iterate over the entries from iter0 and iter1, with the values
373 * interleaved as directed by the select function. The iterator takes
374 * ownership of iter0 and iter1 and frees them when the iteration is
375 * over. A derived class should set `ordered` to 1 or 0 based on
376 * whether it generates its output in order by reference name.
377 */
378 struct ref_iterator *merge_ref_iterator_begin(
379 int ordered,
380 struct ref_iterator *iter0, struct ref_iterator *iter1,
381 ref_iterator_select_fn *select, void *cb_data);
382
383 /*
384 * An iterator consisting of the union of the entries from front and
385 * back. If there are entries common to the two sub-iterators, use the
386 * one from front. Each iterator must iterate over its entries in
387 * strcmp() order by refname for this to work.
388 *
389 * The new iterator takes ownership of its arguments and frees them
390 * when the iteration is over. As a convenience to callers, if front
391 * or back is an empty_ref_iterator, then abort that one immediately
392 * and return the other iterator directly, without wrapping it.
393 */
394 struct ref_iterator *overlay_ref_iterator_begin(
395 struct ref_iterator *front, struct ref_iterator *back);
396
397 /*
398 * Wrap iter0, only letting through the references whose names start
399 * with prefix. If trim is set, set iter->refname to the name of the
400 * reference with that many characters trimmed off the front;
401 * otherwise set it to the full refname. The new iterator takes over
402 * ownership of iter0 and frees it when iteration is over. It makes
403 * its own copy of prefix.
404 *
405 * As an convenience to callers, if prefix is the empty string and
406 * trim is zero, this function returns iter0 directly, without
407 * wrapping it.
408 *
409 * The resulting ref_iterator is ordered if iter0 is.
410 */
411 struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0,
412 const char *prefix,
413 int trim);
414
415 /* Internal implementation of reference iteration: */
416
417 /*
418 * Base class constructor for ref_iterators. Initialize the
419 * ref_iterator part of iter, setting its vtable pointer as specified.
420 * `ordered` should be set to 1 if the iterator will iterate over
421 * references in order by refname; otherwise it should be set to 0.
422 * This is meant to be called only by the initializers of derived
423 * classes.
424 */
425 void base_ref_iterator_init(struct ref_iterator *iter,
426 struct ref_iterator_vtable *vtable,
427 int ordered);
428
429 /*
430 * Base class destructor for ref_iterators. Destroy the ref_iterator
431 * part of iter and shallow-free the object. This is meant to be
432 * called only by the destructors of derived classes.
433 */
434 void base_ref_iterator_free(struct ref_iterator *iter);
435
436 /* Virtual function declarations for ref_iterators: */
437
438 typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator);
439
440 typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator,
441 struct object_id *peeled);
442
443 /*
444 * Implementations of this function should free any resources specific
445 * to the derived class, then call base_ref_iterator_free() to clean
446 * up and free the ref_iterator object.
447 */
448 typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator);
449
450 struct ref_iterator_vtable {
451 ref_iterator_advance_fn *advance;
452 ref_iterator_peel_fn *peel;
453 ref_iterator_abort_fn *abort;
454 };
455
456 /*
457 * current_ref_iter is a performance hack: when iterating over
458 * references using the for_each_ref*() functions, current_ref_iter is
459 * set to the reference iterator before calling the callback function.
460 * If the callback function calls peel_ref(), then peel_ref() first
461 * checks whether the reference to be peeled is the one referred to by
462 * the iterator (it usually is) and if so, asks the iterator for the
463 * peeled version of the reference if it is available. This avoids a
464 * refname lookup in a common case. current_ref_iter is set to NULL
465 * when the iteration is over.
466 */
467 extern struct ref_iterator *current_ref_iter;
468
469 /*
470 * The common backend for the for_each_*ref* functions. Call fn for
471 * each reference in iter. If the iterator itself ever returns
472 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop
473 * the iteration and return that value. Otherwise, return 0. In any
474 * case, free the iterator when done. This function is basically an
475 * adapter between the callback style of reference iteration and the
476 * iterator style.
477 */
478 int do_for_each_ref_iterator(struct ref_iterator *iter,
479 each_ref_fn fn, void *cb_data);
480
481 /*
482 * Only include per-worktree refs in a do_for_each_ref*() iteration.
483 * Normally this will be used with a files ref_store, since that's
484 * where all reference backends will presumably store their
485 * per-worktree refs.
486 */
487 #define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02
488
489 struct ref_store;
490
491 /* refs backends */
492
493 /* ref_store_init flags */
494 #define REF_STORE_READ (1 << 0)
495 #define REF_STORE_WRITE (1 << 1) /* can perform update operations */
496 #define REF_STORE_ODB (1 << 2) /* has access to object database */
497 #define REF_STORE_MAIN (1 << 3)
498 #define REF_STORE_ALL_CAPS (REF_STORE_READ | \
499 REF_STORE_WRITE | \
500 REF_STORE_ODB | \
501 REF_STORE_MAIN)
502
503 /*
504 * Initialize the ref_store for the specified gitdir. These functions
505 * should call base_ref_store_init() to initialize the shared part of
506 * the ref_store and to record the ref_store for later lookup.
507 */
508 typedef struct ref_store *ref_store_init_fn(const char *gitdir,
509 unsigned int flags);
510
511 typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err);
512
513 typedef int ref_transaction_prepare_fn(struct ref_store *refs,
514 struct ref_transaction *transaction,
515 struct strbuf *err);
516
517 typedef int ref_transaction_finish_fn(struct ref_store *refs,
518 struct ref_transaction *transaction,
519 struct strbuf *err);
520
521 typedef int ref_transaction_abort_fn(struct ref_store *refs,
522 struct ref_transaction *transaction,
523 struct strbuf *err);
524
525 typedef int ref_transaction_commit_fn(struct ref_store *refs,
526 struct ref_transaction *transaction,
527 struct strbuf *err);
528
529 typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags);
530 typedef int create_symref_fn(struct ref_store *ref_store,
531 const char *ref_target,
532 const char *refs_heads_master,
533 const char *logmsg);
534 typedef int delete_refs_fn(struct ref_store *ref_store, const char *msg,
535 struct string_list *refnames, unsigned int flags);
536 typedef int rename_ref_fn(struct ref_store *ref_store,
537 const char *oldref, const char *newref,
538 const char *logmsg);
539 typedef int copy_ref_fn(struct ref_store *ref_store,
540 const char *oldref, const char *newref,
541 const char *logmsg);
542
543 /*
544 * Iterate over the references in `ref_store` whose names start with
545 * `prefix`. `prefix` is matched as a literal string, without regard
546 * for path separators. If prefix is NULL or the empty string, iterate
547 * over all references in `ref_store`. The output is ordered by
548 * refname.
549 */
550 typedef struct ref_iterator *ref_iterator_begin_fn(
551 struct ref_store *ref_store,
552 const char *prefix, unsigned int flags);
553
554 /* reflog functions */
555
556 /*
557 * Iterate over the references in the specified ref_store that have a
558 * reflog. The refs are iterated over in arbitrary order.
559 */
560 typedef struct ref_iterator *reflog_iterator_begin_fn(
561 struct ref_store *ref_store);
562
563 typedef int for_each_reflog_ent_fn(struct ref_store *ref_store,
564 const char *refname,
565 each_reflog_ent_fn fn,
566 void *cb_data);
567 typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store,
568 const char *refname,
569 each_reflog_ent_fn fn,
570 void *cb_data);
571 typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname);
572 typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname,
573 int force_create, struct strbuf *err);
574 typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname);
575 typedef int reflog_expire_fn(struct ref_store *ref_store,
576 const char *refname, const struct object_id *oid,
577 unsigned int flags,
578 reflog_expiry_prepare_fn prepare_fn,
579 reflog_expiry_should_prune_fn should_prune_fn,
580 reflog_expiry_cleanup_fn cleanup_fn,
581 void *policy_cb_data);
582
583 /*
584 * Read a reference from the specified reference store, non-recursively.
585 * Set type to describe the reference, and:
586 *
587 * - If refname is the name of a normal reference, fill in oid
588 * (leaving referent unchanged).
589 *
590 * - If refname is the name of a symbolic reference, write the full
591 * name of the reference to which it refers (e.g.
592 * "refs/heads/master") to referent and set the REF_ISSYMREF bit in
593 * type (leaving oid unchanged). The caller is responsible for
594 * validating that referent is a valid reference name.
595 *
596 * WARNING: refname might be used as part of a filename, so it is
597 * important from a security standpoint that it be safe in the sense
598 * of refname_is_safe(). Moreover, for symrefs this function sets
599 * referent to whatever the repository says, which might not be a
600 * properly-formatted or even safe reference name. NEITHER INPUT NOR
601 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION.
602 *
603 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT
604 * and return -1. If the ref exists but is neither a symbolic ref nor
605 * an object ID, it is broken; set REF_ISBROKEN in type, set errno to
606 * EINVAL, and return -1. If there is another error reading the ref,
607 * set errno appropriately and return -1.
608 *
609 * Backend-specific flags might be set in type as well, regardless of
610 * outcome.
611 *
612 * It is OK for refname to point into referent. If so:
613 *
614 * - if the function succeeds with REF_ISSYMREF, referent will be
615 * overwritten and the memory formerly pointed to by it might be
616 * changed or even freed.
617 *
618 * - in all other cases, referent will be untouched, and therefore
619 * refname will still be valid and unchanged.
620 */
621 typedef int read_raw_ref_fn(struct ref_store *ref_store,
622 const char *refname, struct object_id *oid,
623 struct strbuf *referent, unsigned int *type);
624
625 struct ref_storage_be {
626 struct ref_storage_be *next;
627 const char *name;
628 ref_store_init_fn *init;
629 ref_init_db_fn *init_db;
630
631 ref_transaction_prepare_fn *transaction_prepare;
632 ref_transaction_finish_fn *transaction_finish;
633 ref_transaction_abort_fn *transaction_abort;
634 ref_transaction_commit_fn *initial_transaction_commit;
635
636 pack_refs_fn *pack_refs;
637 create_symref_fn *create_symref;
638 delete_refs_fn *delete_refs;
639 rename_ref_fn *rename_ref;
640 copy_ref_fn *copy_ref;
641
642 ref_iterator_begin_fn *iterator_begin;
643 read_raw_ref_fn *read_raw_ref;
644
645 reflog_iterator_begin_fn *reflog_iterator_begin;
646 for_each_reflog_ent_fn *for_each_reflog_ent;
647 for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse;
648 reflog_exists_fn *reflog_exists;
649 create_reflog_fn *create_reflog;
650 delete_reflog_fn *delete_reflog;
651 reflog_expire_fn *reflog_expire;
652 };
653
654 extern struct ref_storage_be refs_be_files;
655 extern struct ref_storage_be refs_be_packed;
656
657 /*
658 * A representation of the reference store for the main repository or
659 * a submodule. The ref_store instances for submodules are kept in a
660 * linked list.
661 */
662 struct ref_store {
663 /* The backend describing this ref_store's storage scheme: */
664 const struct ref_storage_be *be;
665 };
666
667 /*
668 * Fill in the generic part of refs and add it to our collection of
669 * reference stores.
670 */
671 void base_ref_store_init(struct ref_store *refs,
672 const struct ref_storage_be *be);
673
674 #endif /* REFS_REFS_INTERNAL_H */